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INTRODUCTION ■ 

This document is the Final Report for Navy Contract N00014-85-K-0215. 

Since this also represents the termination of ONR support of our Yale 

Research (we hope for only a modest period), I have included some background 

information that reviews the history of our ONR support beginning in 1972. 

Reference is made to the Summary Report written on the preceding 

contract, N00014-76-C-0527, which covered the period of November 1975 - 1 

May 1982. The present report discusses our major research focuses, key 

personnel, and publications since that period of time. A complete personnel 

history and publications list for ONR supported research is provided in 

Appendices I and II. 

SMALL SCALE SCIENCE 

With much attention being paid to BIG SCIENCE' (URI's, NSF Centers, 

Supercomputers, and SSC's), it is a tribute to ONR that it has undergirded a 

major part of small scale, basic research. Sustained support at modest 

amounts for large numbers of Principal Investigators must remain the 

backbone of any federal research program if we are to produce the 

scientific/technological results and human resources necessary for our 

country to move ahead in an interdependent world. The buying power of 

federal money has probably declined, not only because of inflation but also 

because of the growing Indirect Cost rates that Universities have negotiated 

with the Federal Government.  (Hopefully these trends will reverse.) 

Thus, a rough analysis shows that over the 15 years of support at a 

total of about $750K, the dollar value (in purchasing power) of ONR support 

for our work has gradually declined.  Nevertheless, university researchers 



(faculty and students) are used to adjusting to these circumstances. Our 

accomplishments, outlined below, and the comprehensive bibliography attest 

to the quality and productivity of our work under ONR support. 

PRIMARY RESEARCH FOCUSES: 1985-1988 

We have emphasized four research topics in the past three years. Each 

has been described in early Progress Reports, and is summarized briefly 

below. The last three projects have been supported primarily by the 

National Institute of Health, with ONR's contribution being directed 

primarily on the methodology, and less on the medical applications. 

1. Interfacial Characterization of Surfaces in the Presence of Surfactants 

Key Questions: How does one model the mechanical characteristics of 

liquid-fluid interfaces that are contaminated or contain surface-active 

materials (surfactants)? 

Motivation:  Surface characterization of liquid-fluid interfaces has 

applications in the oil industry, chemical industry, and biomedical 

applications.  The state-of-the-art is highly empirical (the "try and 

see" approach). 

Approach:  Develop a sensitive experimental method for measuring interfacial 

mechanics, and relate the experiments to a realistic model of the 

interface (e.g. something like equations for the constitutive and 

transport  properties  of  the  surface as  a function of  surface 

concentration of additives). 

Progress thus far: The characteristics, especially energy dissipation, of 

. capillary waves are strongly influenced by the presence of surfactants 

or contaminants.  We have studied the phenomena by investigating both 



theoretically and experimentally the free quadrupole oscillations of a 

fluid drop in another fluid. A theoretical model has been established 

in which surface dilatational elasticity, introduced naturally by a 

hydrodynamic analysis, and surface dilatational and shear viscosities 

are imposed on the interface. These additional surface properties 

change the boundary conditions. Strong vorticity is thus generated in 

the boundary layers when the drop is oscillating, and enhances the 

energy dissipation of the system. Explicit expressions for the damping 

constant and the free oscillation frequency for several limiting cases 

have been derived by the perturbation method and compared to 

experimental data directly. 

An acoustic method for suspending a drop in another liquid and 

deforming the drop has been combined with an optical detection scheme 

to measure the frequency and damping constant of the drop. The sample 

systems that we have studied are hexane drops of different radii in 

pure water and hexane drops in sodium dodecyl sulfate (SDS) aqueous 

solutions of different concentrations. The data for the pure system 

confirm the theoretical predictions. For hexane drops in SDS aqueous 

solutions, it is found that the most important interfacial property is 

the surface dilatational elasticity. Furthermore, the measured damping 

constants are well explained for SDS concentrations lower than 1.75 mM 

by employing an ideal equation of state for surfactants at the 

interface. The interfacial tension between hexane and SDS aqueous 

solutions of different concentrations has also been obtained. Finally, 

comparing the time history curves for the free oscillation frequency 
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and damping constant of a contaminated system reveals that the surface 

dilatational elasticity, which is a function of contaminants, may be the 

major cause of the time dependent phenomenon. 

2.  Microcavitation 

Key Question:  Under what circumstances does high frequency ultrasonic waves 

produce detectable micron-scale cavitation? 

Motivation:   In some applications microcavitation is desirable  (e.g. 

cleaning microchips) and in some, undesirable (ultrasonic investigation 

of the fetus). 

Approach:   Produce a model which describes the inception and effects of 

microcavitation,  and  compare  the model with carefully controlled 

experiments that are sensitive enough to measure single bubble at the 

micron scale. 

Progress Thus Far: Our progress thus far has been both experimental and 

theoretical. On the experimental front we have sought to measure 

micron-scale cavitation in three ways: 1) sonoluminescence; 2) passive 

scattering and listening, and 3) active cavitation detection (ACD). 

Since results for the first two have been reported in the literature, 

what follows is a review of our novel ACD technique. 

The Active Cavitation Detector (ACD) makes use of high frequency 

scattered sound waves as an indicator of microbubble activity. We use 

a lightly focused, narrow band ultrasonic transducer operating in a 

pulse-echo mode (see Fig. 1 ). This "detector" transducer, which 

produces low level acoustic tone bursts, is positioned confocally 

relative to the "cavitation" transucer. The high frequency (30 MHz 

center frequency) detector pulse is synchronized with the lower 



frequency cavitation pulse in order to insure tha,t the two pulses 

overlap temporally in the confocal region. If a cavitation event 

occurs, the bubble will scatter a significant portion of the ACD pulse, 

which will be detected in the backscattered direction. Prior work 

suggests that this active scattering system is sensitive enough to 

detect individual human red blood cells suspended in isotonic saline. 

A 1 um diameter gas bubble in water has a scattering cross section 

which is 425 times larger than that of a typical red blood cell. 

Needless to say, the ACD is sensitive enough to detect individual 

microbubbles, which makes it one of the most sensitive cavitation 

detectors in existence today. / 

ACD Electronics 

Signal Generation 
Electronics 

ACD 
Acoustic Absorber 

n 
Cavitation L 
Transducer       "/ 

Confocal Zone 7 Passive Detector 

o 
Oscilloscope 

Fig. 1 Block Diagram of the Active Cavitation Detector Experiment 

In our preliminary experiments we compared the sensitivity of the 

present embodiment of the ACD with that of a more traditional technique 

which utilizes a passive acoustic detector which "listens" for lower 

frequency scattering from cavitating bubbles.  Using a 50 ysec long, 



750 KHz center frequency cavitation pulse and a 10 usec long ACD pulse, 

we initially set the relative synchronization of the two pulses so that 

they overlapped in the first 10 usec of the cavitation pulse. While 

simultaneously monitoring the outputs of the two detectors, we measured 

the cavitation threshold in relatively clean, degassed water. Next, we 

increased the delay of the detector pulse relative to the cavitation 

pulse so that the two pulses overlapped in the second 10 usec of the 

cavitation tone burst, and repeated the threshold measurement. By 

incrementally increasing the delay in this manner, we were able to scan 

the entire cavitation pulse. 

The results of this "proof of principle" experiment are given in 

Table 1. Note the marked reduction in the thresholds measured by the 

ACD. This result is significant, for it suggests that the thresholds 

measured using passive detection may be dependent on the detector 

sensitivity, and therefore not represent "true" thresholds. This is 

similar  to  a  conclusion  made  by     others using  a 

sonoluminescence technique. Indeed, the same may be true of the ACD 

measurements. The only way to determine this will be to vary the 

sensitivity of the ACD (which we can do) and see if the thresholds 

change. Also we shall note the variation in measured threshold as we 

change the temporal overlap position. This serves to illustrate one of 

the novel features of the ACD: the ability to interrogate the 

cavitation field during a precisely specified time window. Also since 

the ACD transducer is finely focussed, it offers spatial resolution as 

well. Therefore, by introducing appropriate time and position 

manipulators, it should be possible to determine both where and when 

cavitation is occurring in a given sample. 



Overlap Region ACD Threshold Passive Threshold 

First 10 |isec 15±2 Bar peak 22±2 Bar peak 

Second" 14±3 22±2 

Third" 15±2 22±2 

Fourth " 15±2 22±2 

Fifth " 21±3 22+2 

Table 1. Comparison of thresholds measured with the ACD and a passive detector. 

Ulciraately, we seek to compare the results of active cavitation 

detection with other techniques (e.g. sonoluniinescence) to learn when 

cavitation is accompanied by free radical formation. Transient bubble 

formation, by itself, is not necessarily correlated with conditions 

that produce health risks. Therefore, it is essential that we have the 

most sensitive bubble detection system possible, so that distinction 

between bubble occurrence and bubble effects can be made. 

3.  The Nonlinear Parameter of Materials 

Key Questions: How does the acquistion of data on the acoustic nonlinearity 

parameter of a material add to our understanding of material behavior, 

and does this additional data offer any special opportunities with 

regard to determining the composition of mixtures? 

iMotivation: The "inverse problem" of determining component properties from 

data on the mixture has applications in material science, the health 

field, and on other areas of science and engineering. For instance, it 

would be extraordinarily helpful to be able to determine tissue 

composition in vivo from non-invasive acoustical measurements. 



Approach: Generate a mixture law for the nonlinear parameter of mixtures 

and apply it to the determination of composition of mixtures 

(including, for example, tissue phantoms). 

Progress Thus Far: The measurement procedure and apparatus for measuring 

the nonlinear parameter have been refined to allow accurate and 

repeatable measurements of the acoustic nonlinear parameter, B/A, for 

liquid and gel-like substances. As outlined in our earlier reports, 

an acoustic interferometric technique is employed to measure the 

small changes in sound speed which occur as pressure is changed in 

the substance to be measured. Our system is distinct from that of 

other researchers in that we make rapid adiabatic pressure changes as 

small as one atmosphere. In addition, we use pulsed ultrasound to 

avoid standing wave effects, making it suitable for both lossy and 

not-so-lossy materials, and our system requires no temperature 

ramping. Because our data collection procedure is 

computer-controlled and each measurement takes only a few seconds, it 

is possible for us to make thousands of independent measurements of 

B/A and perform statistics on the ensemble to infer the true B/A 

value (see accompanying Figure 2). The resulting mean values of the 

nonlinearity parameter, made on a wide range of substances, are as 

accurate or more accurate than those in existing published data. 

This high level of accuracy is necessary in order to allow us to 

study quantitatively our tissue composition methodology, compare it 

with other such models, and to improve it with a view toward its use 

in in vivo imaging. 



Scatlergram of B/A of H20 at 20°C 
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Figure 2: Data and Statistical Measures for B/A Experiments 
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In the past year the apparatus has been fully automated, the 

temperature stability and monitoring have been improved, and the 

electronics redesigned to yield more consistent measurements (see 

apparatus Figure 2).  Because we will soon be analyzing protein and 

lipid suspensions of precisely controlled molecular structure, our 

measurement cell has been modified  to accept small quantities (30 

ml) of solution.  Earlier in :ae year we measured the density, sound 

velocity, and B/A of water, methanol, dextrose solutions, various 

gelatins, and mixtures of these materials.  To help us investigate 

the role of molecular structure in our methodology, however, we must 

make a more systematic study.  We anticipate making measurements of 

density, sound velocity, B/A, acoustic absorption, and MRI proton 

relaxation time on biochemically well-characterized materials (amino 

acids, proteins, lipids, and their mixtures), varying quantities such 

as pH, temperature, and surfactant concentration for each.  Our goal 

is to analyze and compare the various mixture rules which predict, on 

the basis of measurements made on the bulk materials, the volume 

fractions of water, protein, and fat contained in the mixture.  Once 

the theory has been refined, it should be possible to characterize a 

tissue by measuring its bulk properties and inferring its water, 

protein, and fat content.  Eventually, it may be possible to perform 

this technique _in vivo by imaging parameters such as the acoustic 

absorption,  sound  velocity,  and B/A,  and using  our  improved 

methodology to infer the components.  We have already collected in 

vitro data on "phantom" mixtures, i.e. tissue-equivalent mixtures for 

which the water-protein-fat ratios are known, in order to see under 

what conditions the existing models correctly predict the components. 
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For  example, below is a summary of some recent tests that compare 

our experimental results with predictions from the Apfel model. 

Table 2 

Mixture 

50% gel4* 
50% chicken fat 

Measured or Inferred Parameters 

943.2        1470.1        4.91 8.85 

Known 

Percentages 

53.5% water 
3.5% protein 

43% fat 

Predictions 

(Apfel Methodologvl 

56% water 
0.8% protein 

43.1% fat 

75% gel4 
25% chicken fat 

990.0   1505.4   4.46   7.43 

* gel4 = 4% gelatin (by volume) in water 

74.5% water 
4% protein 

21.5% fat 

75.3% water 

5.6% protein 

19% fat 

In the coming year we will complete our analysis of the existing 

mixture models by testing their ability to predict the components of 

many different kinds of mixtures. We hope to be able to extend our 

theory to allow us to resolve differences between similar tissues 

(e.g. cancerous and non-cancerous tissue). We will then begin making 

measurements on tissues of this type, as well as on pure materials 

whose material properties (density, sound velocity, B/A) are not 

well-characterized. Finally, by performing a detailed study of 

mixture properties with concentration and temperature, we hope to 

gain insights into the molecular structure of the various mixtures. 

(This work is largely supported by NIH, now. Early work and 

non-biological applications supported by ONR.) 
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4.  Mlcroparticle Characterization Using Acoustic Scattering 

Key Question:  Can one characterize the mechanical properties of 

distributions of microparticles suspended in a liquid, distinguishing 

among subpopulations, etc.? 

Motivation: A wide range of equipment is available to size and 

characterize particles, drops, and bubbles, but none of these focuses 

on mechanical properties of Individual particles that are part of a 

large group of particles. Applications abound in biomedlcine, the 

chemical industry, and in several other areas in the public and 

private sector. 

Approach: Develop an experimental procedure that can provide size, 

density, and compressibility information on each particle in a 

suspension passing through the focal zone of a pair of 30 MHz 

acoustic transducers, and compare the information gained from the 

scattered signals with theory that has been appropriately modified so 

as to allow the inversion of the scattering data Into material 

properties. 

Progress Thus Far: The topic of this work is an acoustic scattering 

technique for determining the compressibility and density of 

individual particles. The particles, which have diameters on the 

order of 3-10 um, are modeled as fluid spheres. Ultrasonic tone 

bursts of 2 usec duration and 30 MHz center frequency scatter from 

individual particles as they traverse the focal region of two 

confocally positioned transducers. One transducer acts as a receiver 

while the other both transmits and receives acoustic signals. The 

resulting  scattered  bursts  are detected at 90°   and at 180° 
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(backscattered). Using either the long wavelength (Rayleigh) or the 

weak scatterer (Born) approximations, it is possible to determine the 

compressibility and density of the particle provided we possess £ 

priori knowledge of the particle size and the host properties. The 

detected scattered signals are digitized and stored in computer 

memory. With this information we can compute the mean 

compressibility and density averaged over a population of particles 

(typically 1000 particles) or display histograms of scattered 

amplitude statistics. 

An experiment was first run to assess the feasibility of using 

polystyrene polymer microspheres to calibrate the instrument. A 

second study was performed on the buffy coat harvested from whole 

human blood. Finally, Chinese hamster ovary cells which were subject 

to hyperthermia treatment were studied in order to see if the 

instrument could detect heat induced membrane blebbing (blistering). 

In these experiments, we demonstrated the utility of the 

instrument for isolating subgroups in a mixed population. This 

suggests that the acoustic scattering apparatus would be well suited 

to applications involving selective operations, such as particle 

sorting or counting. Because the demodulated acoustic signals are 

available in real time, it is possible to use acoustic information to 

provide a sorting criterion. 

A distinct disadvantage of our acoustic apparatus is that there 

are two independent bits of information available from our 

experiments, but there are three unknowns (volume, density, and 

compressibility) in the theory (assuming that the wavelength is 

sufficiently long and the scatterer is sufficiently weak so that 
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shape is not a factor). This fact leaves us in the dilemma of not 

being able to determine physical properties without a priori 

information. 

Our most recent work is devoted primarily to Incorporating a 

particle volume sensing device into the acoustic scattering system in 

order to overcome the above-mentioned problem. We have built and 

tested our own Coulter-type sensing orifice. From the raw data 

obtained with our new apparatus we should be able to calculate 

density, and compressibility for each cell passing through the 

system. (This data was taken on Oct. 22, 1987, and has not been 

evaluated in detail for quantitative information.) 
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Meai£)iameter= 4.9 
SD (acoustic)  =9.3% 
SD(coulter)    = 12.0% 

Meai£)iamettfr= 5.9 ^m 
SD (acoustic)   =7.3% 
SD (coulter)     =8.0% 

MeadDiamet€r= 7.4 |im 
SD(acoustic)  = 6.4% 
SD (coulter)    =8.1% 

Meai£)iameter= 9.7 ^im 
SD (acoustic)  =3.0% 
SD (coulter)    =2.1% 

Meflii)iameter= 10.5 fim 
SD(acoustic) =7.4% 
SD (coulter)    =8.7% 

Mead3iameter= 14.6 ^m 
SD(acoustic) =3.4% 
SD (coulter)    =2.7% 

I 
Fig. 3 Histograms of the 90° scattered signals forpolyscyrenc microspheres in water. 

The horizootal axis corresponds to the cube root of the scattered sigmd amplitude, 
which for polystyrene is proportional to size. 
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